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WHEN SEVERAL BAYESIANS AGREE THAT THERE WILL BE 

NO REASONING TO A FOREGONE CONCLUSION 


JOSEPH B. KADANE, MARK J. SCHERVISH, 

AND TEDDY SEIDENFELDTS 


Cnrnegie Mellon University 

When can a Bayesian investigator select an hypothesis H and design an exper- 
iment (or a sequence of experiments) to make certain that, given the experimental 
outcome(s), the posterior probability of H will be lower than its prior probability? 
We report an elementary result which establishes sufficient conditions under which 
this reasoning to a foregone conclusion cannot occur. Through an example, we 
discuss how this result extends to the perspective of an onlooker who agrees with 
the investigator about the statistical model for the data but who holds a different 
prior probability for the statistical parameters of that model. We consider, spe- 
cifically, one-sided and two-sided statistical hypotheses involving i.i.d. Normal 
data with conjugate priors. In a concluding section, using an "improper" prior, 
we illustrate how the preceding results depend upon the assumption that proba- 
bility is countably additive. 

1. Expected Conditional Probabilities and Reasoning to Foregone Conclusions. Sup-
pose that an investigator has his or her designs on rejecting, or at least making 
doubtful, a particular statistical hypothesis H. To what extent does basic inductive 
methodology insure that, without violating the total evidence requirement, this 
intent cannot be sure to succeed? We distinguish two forms of the question: 

(1) Can the investigator plan an experiment so that he or she is certain it will 
halt with evidence that disconfirms H? 

(2) Can the investigator plan an experiment so that others are certain that the 
investigator will halt with evidence that disconfirms H? 

That is, are foregone conclusions, viewed either (1) in the first-person or (2) in the 
third-person perspective, precluded by fundamental principles in the design of ex- 
periments? (In both versions of the question, we understand the judgment of dis- 
confirmation to be the investigator's.) 

Related to these questions is the familiar controversy whether an experimenter's 
stopping rule is relevant to the analysis of his or her experimental data. Savage 
writes (1962, 18), 

The [likelihood] principle has important implications in connection with op- 
tional stopping. Suppose the experimenter admitted that he had seen 6 red- 
eyed flies in 100 and had then stopped because he felt that he had thereby 
accumulated enough data to overthrow some popular theory that there should 
be about 1 per cent red-eyed flies. Does this affect the interpretation of 6 out 
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of loo? Statistical tradition emphasizes, in connection with this question, that 
if the sequential properties of his experimental programme are ignored, the 
persistent experimenter can arrive at data that nominally reject any null hy- 
pothesis at any significance level, when the null hypothesis is in fact true. These 
truths are usually misinterpreted to suggest that the data of such a persistent 
experimenter are worthless or at least need special interpretation; see, for 
example, Anscombe (1954), Feller (1940), Robbins (1952). The likelihood 
principle, however, affirms that the experimenter's intention to persist does 
not change the import of his experience. 

Here is a simple example of what Savage refers to as "statistical tradition." 
Consider the null hypothesis H,: 0 = 0, that the mean of i i d  normal data is 0. 
The data have known unit variance. Fix k, so that k d v n  corresponds to the 
nominal rejection point in an a-level UMPU (Uniformly Most Powerful, Unbi- 
ased) test of H, versus the composite alternative hypothesis H::O # 0, based on a 
sample of size n. Let H, denote the simple hypothesis that 0 = t. Continue ob- 
serving data until the sample average, 8, = (x, + . . . + x,,)/n, satisfies the in- 
equality (1.1), then halt: 

IF,/ > k,Wn (1.1) 

The likelihood principle entails that the statistician's intent to stop only when 
(1.1) obtains is irrelevant to the "evidential import" of the data for hypotheses 
about 0 (for a recent view, see Berger 1985, 57.7). However, the statistician has 
here designed an experiment that, provided it stops, yields data with a very low 
likelihood for H, versus a rival hypothesis, H, (for t = 4).If, contrary to tradi- 
tional (Neyman-Pearson) theory, the significance level is calculated independent 
of the stopping rule for the experiment-a mistake by that traditional theory- 
then when the inquiry halts H, has achieved an observed significance of a, or less. 
Moreover, given the truth of H,, by the law of the iterated logarithm, with prob- 
ability 1 the experiment terminates, i.e., almost surely the inequality (1.1) is even- 
tually satisfied. 

Traditional hypothesis testing sidesteps this forgone conclusion (of a low sig- 
nificance level) only by incorporating the experimenter's intention, of when to 
terminate sampling, as part of the relevant evidence. This is contrary to the like- 
lihood principle. By contrast, the Bayesian answer to the first-person version of 
our question (1) is straightforward and elementary. In short, with a countably 
additive probability, the law of total probability ensures that conditional proba- 
bilities cannot lead to a foregone conclusion. Thus, when the investigator uses 
Bayes' rule for updating, he or she cannot plan an experiment that, by his or her 
own lights leads to a posterior opinion surely below (or surely above) his or her 
prior opinion. This argument has been reported before. (See, e.g., D. Kerridge's 
1963 note.) Kadane et al. have discussed it elsewhere (1995) and we include the 
bare details here for completeness of our presentation. 

Let (S, 5l,P) be a (countably additive) probability space, which we think of as 
the underlying joint space for all quantities of interest. Expectations are with re- 
spect to the probability P. Unconditional expectation is denoted by E(*) and con- 
ditional expectation given a random variable X is denoted by E(*/X). Let (X, %) 
and ( a ,  T) be measurable spaces where, 

X: S -,X is a random quantity to be learned, 
0:S + is any random quantity, 

and h: 	 -+ 91" is an (extended) real-valued function whose expectation E(h) 
exists. 
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Then the familiar law of total probability implies that: 

E[E(h (0)  I XI1 = E(h (0)). (1.2) 
(See,e.g.,Ash 1972,T. 6.5.4,p.257.) 

This result says that there can be no experiment with outcome X designed (al- 
most surely with respect to P) to drive up or designed to drive down the conditional 
expectation of h, given X. Equation (1.2) has no special logical dependence on 
Bayes's theorem, except that non-Bayesian statistical methods often begin with the 
claim that neither the "prior" expectation E(h (8) ), nor the "posterior" expecta- 
tion E(h (0)  / X), has objective status. 

For example, suppose that h is the indicator for an hypothesis H (an unobserved 
"event") in Q, i.e., h (0) = 1 if 0 E H, h (8) = 0 otherwise. Thus, E(h (0)) is 
the agent's "prior" probability of H, denoted by P(H) = p. Let X,, X,, . . . be 
observations which become available sequentially. In order to consider experi- 
mental designs which mandate a minimum sample size, k 2 0, define N = inf 
{n 2 k: P(H / X,, . . . ,X,) 2 q} where N = if the set is empty. That is, N 
identifies the first point after the kth in the sequence of X,-observations when the 
agent's "posterior" probability of H reaches q, at least. The event N = ob-
tains when, after k-many observations, the sequence of conditional probabilities, 
P(H / X,, . . . ,XJ (n 2 k), all remain below q. Then, 

P(N < w )  5 p/q < 1 .  (1.3) 

Thus, when p < q, the agent's prior probability is less than 1 that, using Bayes' 
rule for updating, he or she will halt the sequence of experiments and conclude 
that the posterior probability of H has risen to q, at least. 

The same argument provides a bound for the conditional probability of ter- 
minating the experiment in finite time, given that H is false: 

P(N < I -IH) 5 p(1- q)/q(l -p). (1.4) 

For example, assume 0 < p 5 .1 and let q/p = 10. That is, by the choice of the 
stopping rule, whenever the experiment terminates the posterior probability for H 
increases ten-fold (at least). Then, the inequality (1.4) asserts that, given that H is 
false, the conditional probability of terminating the experiment is no more than 
(.l -p)/(l -p) < . l .  

Savage (1962, 72-73) offers a similar conclusion and illustrates it with a simple 
case of two Binomial hypotheses. D. Kerridge (1963) derives the same bounds as 
in (1.4) for the case of a uniform prior (p = .5). And Cornfield (1970, 20-21) uses 
Kerridge's inequality to argue that as a Bayesian, you cannot be sure to defeat a 
true "null" hypothesis. However, these results offer answers only to the first version 
of our opening question. In the following section, we extend the analysis to cover 
the second version of our question, involving the perspective of an onlooker. 

2. Hypothesis Testing and Sampling to A Foregone Posterior Probability: a Second 
Perspective. The results of section 1 are "internal" to the Bayesian agent who is 
designing the sequential experiment. For example, the probability bound (1.4) is 
for the investigator's personal probability who designed the sequential experiment. 
It tells the experimenter who is prepared to stop at the first observation when there 
is a rise of at least q-p in his (her) probability of H that, given -H, it is not certain 
that the experiment ever halts. Apart from this "internal" check on reasoning to 
a foregone conclusion, what can be said from the standpoint of an onlooker who 
ponders whether the experimenter will come to assign a high posterior probability 
to a false hypothesis? 



S284 JOSEPH B. KADANE ET AL. 

2.1. The Probability ofHalting When His  False One way to answer this question 
is to consider a second point of view that agrees with the first about the likelihood 
(or sampling model) of the data, but which differs with the experimenter's prior 
probability of the hypotheses H and -H. This is our approach in what follows. 
We consider two varieties of hypotheses, where -H is a one-sided or a two-sided 
alternative. Also, when lH is two-sided, there is the distinction between an inter- 
val-valued and a (traditional) point-valued null hypothesis H. The experimenter 
designing the sequential study stops gathering data once his or her posterior prob- 
ability for H rises to q, at least. His (her) prior probability for H is p (which is 
<q), so that the experiment terminates on the first occasion when H has gained at 
least q -p > 0 over its prior probability. 

For our illustration, the possible observations, X,, X,, . . . are i.i.d Normal 
N(0,l) data. Let the experimenter have a conjugate Normal prior over 0, N(p, 
llh), with specified mean p and precision h. (We make the obvious adjustment and 
follow Jeffreys's 1939 analysis for the case where H is a point-valued hypothesis.) 
We do not restrict the onlooker's prior over 8, except that we assume it is a 
countably additive probability. Given TH, does the onlooker believe, along with 
the experimenter, that with positive probability the latter will assign H probability 
less than q at each stage of an unending inquiry? Will both parties agree that, given 
H is false, it is not a certainty the experimenter will arrive at the foregone conclusion 
he (she) aims for? 

One Sided Testing: For a specified quantity 0,, H is the hypothesis that -a < 0 
5 0, and -H is the complementary hypothesis that 0, < 0 < a.We show that no 
matter what the onlooker's prior probability for lH, in parallel with (1.4), he (she) 
too believes that, given lH, it is less than certain that the experimenter will ever 
conclude the study. We attack this problem by demonstrating a result that makes 
sense from a Classical point of view: 

Theorem 2.1 For each 0 > 0,, P,(experimenter stops inquiry) < 1.U 

(The proof of this theorem is given in the Appendix.) 
This theorem establishes that, no matter how HJails, still it is not a certainty 

that the experimenter comes to assign H (posterior) probability q, at least. Then, 
we have as an easy consequence: 

Corollary From the onlooker's perspective, P(experimenter halts / -H) .,1< 
Two Sided Testing: Next, we examine two cases: where H is an interval with 

non-empty interior, and the traditional point-null hypothesis (as presented in Jef- 
freys's work). Let H be the interval hypothesis that -a< 0 , s  0 5 0, < a (0, < 
0,) and lH is the complementary hypothesis that 0 < 0,  or 0, < 0. By reasoning 
similar to the case of one-sided testing, we show that the onlooker agrees with 
the experimenter that, given -H, there is positive probability the study never 
terminates. 

Theorem 2.2 For each 0 > 0,, and for each 0 < 0,, P,(experimenter stops 
.,1<inquiry) 

Therefore, the onlooker agrees, given l H ,  there is positive probability the exper- 
imenter does not arrive at the forgone conclusion that H has increased its (pos- 
terior) probability to q. 

Third, we adapt the experiment's "prior" to address the traditional case of a 
point-valued null hypothesis using Jeffreys's (1939, Chapter 5)  model of Bayesian 
hypothesis testing. Let H assert that 0 = 0,. The experimenter's "prior" for 0 
satisfies: 
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P(H) = p and given i H ,  0 - N(0,, 111). 


.,1<P,(experimenter stops inquiry) 0,#0For each 2.3Theorem 

We have considered three cases for the "null" hypothesis H: where H is either 
(1) a one-sided interval, 0 5 0,; or (2) H is a two-sided interval, 0 , s  0 5 0, ; or 
(3) H is a point 0 = 0,. In each case, an onlooker who shares the same statistical 
model as the experimenter but who has a different prior over 0, also believes that 
if H fails then it is not certain that the experimenter will ever conclude sampling. 

2.2 The Probability of Halting When H Obtains. Consider, now, the dual ques- 
tion, when H is true. Will the experimenter himiherself be sure of halting, given 
that H obtains? Will the onlooker, with a different prior for H, agree that the 
experimenter is sure to halt if H is true? The answer is Yes to both questions, as 
straight-forward reasoning establishes: 

One sided testing Lemma 2.1: Given 0, 0 5 0,, P,(experiment halts) = .,1 

Two sided testing Lemma 2.2: Given 0, 0, 5 0 5 Oh, then P,(experiment halts) 
= 

Thus, both the experimenter and the onlooker are certain (and they know the other 
is certain) that, given H, the study stops. They share a common expectation that, 
given H, the former comes to assign H a posterior probability of q, at least: 
P(experimenter halts the study I H) = 1. 

Remark: These lemmas imply that, by continuity, unfortunately, 

lim sup,,,, P,(experimenter halts) = 1. 


Thus, the conditional probability of stopping when H fails cannot be bounded 
away from 1. 

2.3 Summary of the Discussion about Hypothesis Testing. We have examined 
the case of a second Bayesian, an onlooker, including as a special instance a so- 
called "frequentist" (whose "prior" may be concentrated on a single value of the 
parameter), who considers the same problem as the Bayesian experimenter. We 
have given details for the case of testing the mean of a normal distribution. In 
Section 1, we saw that an experimenter who assigns an hypothesis probability p 
believes that the conditional probability, given that the hypothesis is false, is less 
than 1 that he or she will stop sampling and declare that the posterior probability 
is at least q > p. In this section, for the special case of testing a normal mean, we 
saw that an onlooker also believes that, given the hypothesis is false, the probability 
is less than 1 that the experimenter will stop and declare the probability of the 
hypothesis to be at least q. 

We also saw that, given the truth of the hypothesis, the onlooker (and the 
experimenter) believe that the experimenter will stop and declare the probability 
of the hypothesis to be at least q. These results applied to the cases of hypotheses 
of the form 0 5 0,, 0, 5 0 5 O,, and 0 = 0,, using natural conjugate or related 
priors. Since the lemma (Lemma A of the appendix) on which these results rest 
applies in greater generality, it stands to reason that these results can be extended. 
Our purpose with these examples is to illustrate where the "internal" conclusions 
(of Section 1) extend to the perspective of an onlooker. 

3. Summary and a Caveat about "Improper" Priors. In Section 1, we displayed 
some elementary reasoning, based on the law of total probability, about the pro- 
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tection simple Bayesian theory affords against sampling to a forgone conclusion. 
In Section 2, using a problem of inference about a normal mean, we extended these 
results to the perspective of a second investigator and to some results that apply 
from a traditional (Neyman-Pearson) point of view as well, i.e., results that apply 
regardless of the unknown value of the parameter. 

We conclude, however, with a warning that the foregoing analysis depends upon 
the assumption that personal probability is countably additive, rather than being 
merely finitely additive. (Kadane et al. (1995) examine the connection between 
Bayesian reasoning to a foregone conclusion and the use of merely finitely additive 
probability.) This is particularly important when the Bayesian investigator uses a 
so-called "improper" prior to capture a merely finitely additive personal proba- 
bility. Here, then, is an illustration of how improper priors can produce Bayesian 
inference to a foregone conclusion, even from the first-person perspective of the 
investigator. 

Let X -N(0, a) and, for a first case without reasoning to a foregone conclusion, 
assume that the precision z (= variance-,) is known. Suppose the prior for 0 is 
conjugate, 0 -N(p,, K,). Then the posterior distribution of 0 given X = x is normal 

with mean p, (K:ir)-+ x(&) and precision K, + a. If the prior is, on a se- 

quence, getting more diffuse, i.e., when K, -,0, this posterior approaches a normal 
distribution with mean x and precision z.This posterior can be recovered by a 
formal Bayes calculation with an improper, uniform distribution for 0, uniform 
on ( - w, w). 

Now, for a second version where reasoning to a foregone conclusion occurs, 
suppose that z is unknown as well. The conjugate prior for 0, given a, is normal 
with mean p, and precision K,a, and the prior on a is the Gamma (a,, Po) distri- 
bution, a proper distribution! The posterior distribution is of the same form, with 
posterior hyperparameters: 

, precision (K, + l ) ~ ,a ,  = a, + 112 

and PI = Po + -PJZ 
2 ( r 0 + 1 )  

Again, the prior on 0 is taken to be diffuse, so we allow that K, -+ 0 in (3.1). Then, 
the posterior remains in the conjugate family, with: 

p, = X, precision a, a ,  = a, + 112, and PI = Po. (3.2) 
This posterior has the following peculiar implication: The prior on z is Gamma 

(a,, Po) while the posterior (as calculated) is Gamma (a, + 112, Po). The posterior 
on z does not depend on the datum X = x and is different from its prior. Thus, 
prior to observing X = x the investigator believes a is Gamma (a,, Po). However, 
regardless what value of X is observed, he or she knows (even in advance) that 
afterwards the posterior will give za Gamma (a,+ 112, Po) distribution. Thus, the 
investigator will have reasoned to a foregone conclusion about a. 

One can show, using the results of Regazzini (1987) or of Berti, Regazzini, and 
Rigo (1991), that the limit of priors, limit of posteriors, and likelihood in this 
example are jointly coherent, in de Finetti's (1974) sense. That is, there is no finite 
collection of pairs of events (El, A,), . . . , (En, A,) and constants c,, . . . , c, such 

that 2 c,I,,[I,, - Pr(E,IA,] is uniformly negative. Thus, de Finetti's standard of 
i =  1 

coherence is not sufficient to ward off reasoning to a foregone conclusion. 
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Moreover, there exists a joint improper prior where the posterior (3.2) can be 
obtained by a nai've application of Bayes' theorem, namely the product of the 
(improper) conditional density for 0 given T, ~ ~ d 0 ,  and the (proper) marginal 
Gamma (a,, p,) density for T. 

Remark: Inspection of (3.3) shows that the improper joint density for (0 ,~ )  is also 
the product of the uniform, improper density for 0, d0, and the proper Gamma 
(a,+ .5, pa) distribution for a-for which there is no reasoning to a foregone con- 
clusion about a based on X. A direct elicitation of the agent's prior (marginal) 
opinion about the parameter z will distinguish between these two different priors. 
That information cannot be recovered, however, by considering the predictive dis- 
tribution of the data. 

In our opening section we recalled the familiar concern that, with traditional 
(Neyman-Pearson) hypothesis testing, optional stopping opens the door to fore- 
gone conclusions when (fixed sample size) significance levels are used to report 
evidential import. We have seen how the fear of sampling to a foregone conclusion 
can be alleviated within the Bayesian paradigm, under the assumption that all 
probability is countably additive. In short, then there are bounds on how high the 
probability can be of sampling until the posterior probability reaches a specified 
level. Moreover, these safeguards are recognized also from the standpoint of an 
onlooker whose prior may differ from the investigator's. However, the safeguards 
are no longer in place when the Bayesian analysis appeals to "improper" priors 
(since they correspond to finitely additive probabilities that are not countably ad- 
ditive). Therefore, it is important, we think, to examine more carefully when the 
use of "improper" priors lead to foregone conclusions, even though they satisfy 
de Finetti's or Savage's (1954) standards of coherent opinion. 

APPENDIX 

For the proof of Theorem 2.1 (Section 2.1), we use a lemma, below, which is a 
substitution instance of Theorem 2 of Chow and Teicher 1988, 146: 

Lemma A: Suppose that Z,, Z,, . . . are i.i.d. with E(Zi) = p > 0 and assume 

that the moment generating function for Zi exists. Let Y, = 2 Z,, for n = 
i =  1 

1, 2, . . . . Fix c < 0 and let M = minjn: Y, 5 c). Then P(M < w) < I., 
Theorem 2.1. For each 0 > 0,, P,(experimenter stops inquiry) < 1. 

Proof: Let S, = 2Xi. Then the experimenter's posterior probability distribution 
I =  I 

Consider the prospect of sampling until the experimenter's posterior probability 
of H is at least q. The experimenter's posterior probability of H is: 

@ (,/= [0, --Sn+*I), where @ is the standard normal cdf This expression is 
n + h  

at least q if and only if 

S, 5 n0, -[V(n+h)l@-'(q) + h(OO-p). (A.1) 
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Note that as p is the experimenter's prior probability of H, @-'(p) = [dh](0, -p). 
To apply the lemma, choose 0 > 0, and define Zi = X, - (0+ 0,)12. Then, 

E,(Z,) > 0. Write 

Then condition (A. 1) becomes: 

Y, 5 - [ d ( n +  h)]@-'(q) + h(0,- p) - n(0-@,)I2 = c,. (A.2) 

The experimenter's stopping rule is to halt at the first n = N such that Y, 5 c,,. 
Observe that c, is decreasing at rate O(n). Thus, 

V(O > 0,) 3m, (both: c,,,, < 0 and cj < c,~,< c, whenever j > m, > i). 

Lemma A applies to the Yi and Z, with c = c,, . That is, let M = min{n: Y, 5 

c,,,,). Then, by the Lemma A, P,(M < w) < 1. 

Remark: If q 2 .5 then @-'(q) 2 0. Since q > p, [gh]@-'(p) 
-[.\/(n+h)]@-'(q) < 0 Thus, h(0, - p) - [d(n+h)]@--'(q)< 0 and 
m, = 1. 

Given 0, Z, is a (normal) random variable whose support is the entire real line. 
Hence, there is positive probability that the experiment continues at least to the 
m,'h trial. That is, denote P,(Y, > c,: i = 1, . . . ,me- 1) by k, and we know that 
k > 0. We use this fact as follows. The experimenter's stopping rule is to halt at 
the first n = N such that Y ,  5 c,,. Thus, as c, < c,,for j > m,, having reached the 
meth trial the experimenter halts no sooner than the first n =M such that Y ,  5 c,,,,. 
Thus, if the mkh trial is reached, N 2 M . Then 

P,(N < w / Y i > c i : i =  1, . . . , me-1) 5 
P,(M < w / Y , > c , : i =  1, . . . , rrg-1). 

B u t , P , ( M < w / Y i > c i : i  = 1, . . . , m e - 1 ) 5 P , ( M < m / M 2 m , ) < P , ( M  
< a )  < 1. The first of these inequalities follows because c, > c,, : i = 1, . . . , 
m, - 1. The second inequality follows because P,(M < m, ) > 0. And the third 
inequality is given by Lemma A. Let k' denote the conditional probability P,(N 
< w / Yi > ci : i = 1, . . . , m, - 1).Thus, max{k, k') < 1. By the multiplication 
theorem, P,(N < a )  = 1-k + kk'. Hence, P,(N < w) < 1: there is positive 
probability that the experiment fails to terminate.,,., 

Theorems 2.2 and 2.3 are established in a similar fashion, using Lemma A. 

Lemmas 2.1 and 2.2 (Section 2.2) are proven by cases: Use the Strong Law of 
Large Numbers whenever 0 is not an endpoint of the hypothesis H, and use 
the Law of the Iterated Logarithm when 0 is an endpoint of H. 
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